Pembuktian Luas Permukaan Kerucut

Daftar Isi
Gambar Penyusun Luas Kerucut

Jika kita perhatikan, luas permukaan kerucut terdiri dari satu lingkaran utuh dan bagian dari lingkaran (juring), maka kita peroleh

Luas Permukaan Kerucut = Lingkaran + Juring AB


Dan ternyata panjang busur AB = keliling lingkaran dengan jari-jari r dikarenakan kedua garis tersebut merupakan rusuk pada bangun kerucut. 

Busur AB = Keliling lingkaran utuh

= `2pir` 

 

Kalian perhatikan bahwa Juring AB memiliki garis pelukis s yang merupakan jari-jari sebuah lingkaran penuh. Perhatikan ilustrasi berikut

 

Gambar Juring AB Dan Lingkaran Penuh

Dari ilustrasi, kita bisa mendapatkan luas dari Juring AB dengan membandingkan antara busur AB dan keliling lingkaran penuh yang berjari-jari s.

Kita anggap lingkaran penuh dari ilustrasi tersebut adalah lingkaran besar, maka

 

`frac{text(Luas Juring AB)}{text(Luas Lingkaran Besar)} = frac{text(Busur AB)}{text(Keliling Lingkaran Besar)}`  

 

Luas Juring AB = `frac{text(Busur AB)}{text(Keliling Besar)} xx text(Luas Lingkaran Besar)` 

= `frac{2pir}{2pis} xx pis^2`

= `frac{cancel(2pi)r}{cancel(2pi)cancel(s)} xx pisxxcancel(s)`  

= `pirs` 

 

Luas Permukaan Kerucut = Luas Lingkaran + Juring AB

= `pir^2 + pirs`

= `pir(r+s)`


Posting Komentar